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Abstract Recently, we presented a method for estimation of the diffusion and
reaction rates of synthesis at high temperatures using limited information, such as
synthesis time and dimensions of reactants, from real laboratory experiments (Mack-
evičius et al. in Central Eur J Chem 10(2):380–385, 2012). There, we restricted our-
selves to the one- and two-dimensional models. Having both adapted our computing
program to the three-dimensional case and significantly speeded it up, now we are
able present the results in the three-dimensional model. Solving an inverse modeling
problem, we obtain explicit formulas for the diffusion coefficient and reaction rate as
functions of temperature. We calculate the activation energies and other parameters,
thus obtaining conditions for occurrence of synthesis. In addition, using the results of
the three-dimensional model, we find the optimal temperature for energy consumption
in the YAG synthesis.
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1 Introduction

The rate of a general homogeneous reaction is conventionally measured by follow-
ing the decrease in concentration of reactants or the increase in concentration of
the products at constant temperature. For the heterogenous reaction, however, the
concept of concentration no longer has the same significance, and the progress of
reaction is usually determined in some other way. The kinetics and the mechanism
studies of heterogeneous reactions thus involve measurement of changes in mass of
reactants of the sample as functions of time at constant temperatures [2–5]. Many
equations relating the rate of solid-state reactions under isothermal and nonisother-
mal conditions to the bulk nucleation followed by three-dimensional growth and
diffused distribution at the phase boundary (classical Fick diffusion or Prout–Tomp-
kins model) are summarized and discussed in the literature [6–10]. The interpre-
tation of the kinetic equations is extremely complicated and considers the way in
which the reaction starts, by a process of nucleation, then how those nuclei grow
and what reaction or interface geometry is involved, and finally, how the reactants
decay. Consequently, for the investigation of complex solid-state reactions different
novel mathematical approximations and computational models recently have been
suggested [11–13].

Yttrium aluminium garnet (2Y3Al5O12, YAG) is now widely used in optical mate-
rials because of a variety of unique optical properties. YAG doped with a transition
metal or lanthanide ions is an important solid-state laser material [14–18].

We applied our model for estimation of the parameters of the YAG synthesis, such
as the diffusion coefficients and reaction rates, using a rather limited information
from real laboratory experiments. Namely, the known data only includes the synthe-
sis half-times at different temperatures and synthesis types, and approximate sizes of
reactant particles, and energy consumption data, needed to maintain temperature for
YAG synthesis. We use the Fick, Arrhenius, and active mass laws. Though the valid-
ity of applying the Arrhenius law to heterogeneous reactions has been questioned,
the parameters obtained from it often have practical values even if their theoretical
interpretation is difficult. In this paper, we mainly consider, the three-dimensional
(in space variables) model. The paper is organized as follows. In Sect. 2, we give a
brief description of laboratory experiments of YAG synthesis. In Sect. 3, we present
a mathematical model for estimation of diffusion-reaction synthesis rates. In Sect. 4,
we formulate the main goal of the paper, the parameters to be estimated. In Sect. 5,
we present the calculation method and steps, and in Sect. 6, the results obtained in
one- and two-dimensional models. In Sect. 7, using the obtained results, we calculate
the optimal temperature that minimizes the energy consumption in YAG synthesis.
We conclude in Sect. 8. Finally, in Appendix, we give some intermediate numerical
results of our calculations.

2 Experimental

The YAG powders could be synthesized by many different methods, such as solid-
state reaction, spray-pyrolysis, coprecipitation, sol–gel, and others. The conditions
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for the formation of monophasic YAG largely depend on the used synthesis method.
For example, by changing the solid-state synthesis method to the sol–gel chem-
istry approach, the YAG formation temperature decreases from 1,600 ◦C down to
1,000 ◦C [19,20].

2.1 Sol–gel method

In the sol–gel synthesis, yttrium oxide was dissolved in 150 mL of 0.2 mol L−1CH3
COOH by stirring the mixture for 10 h at 55–60 ◦C in a breaker covered with a watch-
glass. To this solution, aluminium nitrate dissolved in 50 mL of distilled waster was
added, and the resulting mixture was stirred for 2 h at the same temperature. In the
next step, 1.2 ethanediol (25 mmol) as complexing agent was added to the above solu-
tions. The acidic medium (pH 5) prevents the flocculation of metal hydroxides in the
mixtures and nu adjustment of pH was necessary. After concentrating the solutions by
slow evaporation at 60–70 ◦C under stirring, the Y–Al acetate–nitrate–glycolate solu-
tion turned into a white transparent gel. The oven-dried 60–70 ◦C gel became light
brown due to the initial decomposition of nitrates. The gel powders were ground in an
agate mortar and preheated for 2 h at 800 ◦C in air. Since the gels are very combusti-
ble, slow heating (2 ◦C min−1), especially between 150 and 400 ◦C, was found to be
essential. After an intermediate grinding, the powders were additionally sintered at
various temperatures from 1,000 to 1,600 ◦C in air. The optimum annealing time was
5 h at 1,000 ◦C, 4 h at 1,200 ◦C, and 3 h at 1,600 ◦C.

2.2 Solid-state method

In the solid-state reaction method, the stoichiometric mixture of metal oxides (5Al2O3
and 2Y2O3) was carefully ground in an agate mortar and annealed at various tempera-
tures from 1,000 to 1,600 ◦C in air. The monophasis YAG was obtained only at higher
temperature, after sintering oxide precursor for 5 h at 1,600 ◦C.

3 Mathematical model

We denote by C3 the concentration of the complex 2Y3Al5O12 resulting from the syn-
thesis of two complexes 5Al2O3 and 3Y2O3 with concentrations C1 and C2, respec-
tively, in the reaction

3Y2O3 + 5Al2O3 → 2Y3Al5O12. (1)

The reaction rate w can be expressed by the rate law as follows:

w = kC1C2, (2)

where k is the reaction rate.
The dynamics of concentrations of the reactants by diffusion is described by the

second Fick’s law:
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wi = ∂Ci

∂t
=

3∑

j=1
Di

∂2Ci
∂x2

j
, (3)

where Di is the diffusion coefficient, n is the dimension of the model, and wi is the
rate of synthesis of the i th reactant. We denote

c1 = 5C1, c2 = 3C2, c3 = 2C3; (4)

that is, ci = ci (x, t) is the concentration of the i th reactant (Y2O3, Al2O3, Y3Al5O12
for i = 1, 2, 3, respectively) of the synthesis at a point x ∈ V at time t .

Using the second Fick law and the active mass law for the reaction (1) we get the
following partial differential equation system on the synthesis space V :

∂c1

∂t
=

3∑

j=1
D1

∂2c1
∂x2

j
− 1

5 kc1c2, (5)

∂c2

∂t
=

3∑

j=1
D2

∂2c2
∂x2

j
− 1

3 kc1c2, (6)

∂c3

∂t
=

3∑

j=1
D3

∂2c3
∂x2

j
+ 2

15 kc1c2, (7)

with initial conditions ci (x, 0) = c0
i (x), x = (x1, x2, x3) ∈ V = V ∪∂V, i = 1, 2, 3,

and some boundary conditions (to be stated below) on the boundary ∂V of V . Since
the sizes of molecules Y2O3, Al2O3, Y3Al5O12 are nearly the same, we assume that
all the diffusion coefficients coincide, that is, D1 = D2 = D3 = D. As at high tem-
peratures, the features of solid-state materials change, we think that it is acceptable to
apply the methods used for liquids.

We analyze the relations between D and k by using the following data known
from the true laboratory experiments at Vilnius University: the synthesis half-
times at different temperatures and synthesis methods, and typical dimensions of
the reactant particles. By the half-time we mean the time, denoted t1/2, in which
the total concentration of initial reactants falls to one half; so, it satisfies the
equation

∫

V

(c1(x, t1/2) + c2(x, t1/2))dx = 1

2

∫

V

(c1(x, 0) + c2(x, 0))dx . (8)

To be concrete, the half-times t1/2 approximately equal 5, 4, and 3 h at the tem-
peratures T = 1,000, 1,200, and 1,600 ◦C in the sol–gel synthesis method and 5 h
at 1,600 ◦C in the solid-state synthesis method. At the preparatory stage of the syn-
thesis (using both solid-state and sol–gel reaction methods), the reactants are milled
and mixed thoroughly in some cubic volume. The particles in the synthesis space
are distributed randomly since their exact initial positions are unknown. As a result,

123



J Math Chem (2012) 50:2291–2302 2295

a µm

 µma2

Fig. 1 Synthesis space in the three-dimensional model: V = (0, a) × (0, a) × (0, a); a = 1 (μm) for the
sol–gel method and a = 3√10 (μm) for the solid-state method

modeling would require a huge memory size for storage. Therefore, we assume that
the are periodically stored in the synthesis volume as shown in Fig. 1. Then, because
of periodicity, it suffices to consider the reaction in the cubic synthesis spaceV =
(0, a) × (0, a) × (0, a) with zero boundary conditions, ∂ci/∂n(x) = 0 for x ∈ ∂V ,
where n is the normal vector to the boundary, as shown in Fig. 1. The typical volume
of particles is 1μm3 in the sol–gel synthesis method and 10μm3 in the solid-state
method. So, summarizing, we arrived at the equation system (5)–(7) in the synthesis
space V = (0, a) × (0, a) × (0, a) (n = 3) with the initial conditions proportional
to the initial densities of the particles in the space V and zero boundary conditions,
∂ci
∂n = 0 on ∂V .

When solving numerically the partial differential equation system (5)–(7), we use
the finite difference technique [21].

4 The main goal

Our estimations are based on the Arrhenius laws describing the temperature depen-
dence of the diffusion and reaction rate coefficients by the following relations:

D = D0 exp

{

− ED

RT

}

, k = k0 exp

{

− E A

RT

}

. (9)

Here, ED is the diffusion activation energy, E A is the reaction activation energy, D0
and k0 are constants, and R = 8.314472. Our main goal is to estimate the unknown
parameters ED, E A, D0, k0 by finding the coefficients D and k for temperatures T =
1,000, 1,200, and 1,600 ◦C. In a sense, we solve the inverse problem for system (5)–(7):
given the synthesis half-times t1/2, we look for the parameters D and k of the system
such that the half-time condition (8) is satisfied for all temperatures. Using Eq. (9), for
any temperature T , we can find the corresponding parameters D and k, and then, by
computer modeling, the corresponding synthesis half-time. This allows us to calculate
the energy needed for synthesis at any given temperature and, in particular, to find the
optimal temperature.

123



2296 J Math Chem (2012) 50:2291–2302

 100

 120

 140

 160

 180

 200

 220

 240

 260

 280

 300

 320

 0  5e-006  1e-005  1.5e-005  2e-005  2.5e-005  3e-005  3.5e-005  4e-005  4.5e-005

Oi
M i

N=T1600

L3
~

k

D

L3

L2

L1

T1200

T1000

Fig. 2 Calculations in the three-dimensional model. The synthesis space V = (0, a) × (0, a) × (0, a);
a = 1 (μm) for the sol–gel method and a = 3√10 (μm) for the solid-state method

5 Calculation method

We calculate the diffusion and reaction rate coefficients as follows:
First, for each of the temperatures T1 = 1,000 ◦C, T2 = 1, 200 ◦C, and T3 =

1, 600 ◦C, we draw the graphs L1, L2, and L3 of points (D, k) of the diffusion and
reaction rate parameters for which the half-times are equal to those of the laboratory
experiments by using the sol–gel synthesis method (i.e., t1/2 = 5, 4, and 3, respec-
tively). To this end, we use our computer program which, given any fixed D, half-time
t1/2, and particle size a, numerically solves the system (5)–(7) until the half-time con-
dition (8) is satisfied and, using the middle-point method, finds the value k such that
half-time coincides with the given one. A sufficiently large discrete set of the (D, k)

values is joined by a smooth curve. Finally, in the same way, we additionally draw
the graph L̃3 of the (D, k) for the solid-state method (T3 = 1, 600 ◦C, t1/2 = 5). The
difference with the previous cases is in the particle-size parameter a, which now takes
the value 3

√
10 (three-dimensional model), instead of a = 1. So, in Fig. 2, we see all

four graphs: L1, L2, and L3 for the sol–gel method at temperatures T1, T2, and T3;
and L̃3 for the solid-state method and temperature T3.

At the same temperature, the values of (D, k) for both synthesis methods coincide.
So, the intersection of the graphs L̃3 and L3 gives us the first pair of the true values
of (D, k) at the temperature T3 = 1, 600 ◦C. We mark by N the intersection point.

To calculate the four unknown parameters (ED, E A, D0, k0), we need another pair
of the values of (D, k). Recall that the graph L1 is obtained as the spline of m cal-
culated points Mi = (Di

1000, ki
1000), i = 1, . . . , m, obtained by computer modeling,

where the main condition was that the half-time is 5 h.
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Now, for each pair N = (D1600, k1600), Mi = (Di
1000, ki

1000), using the Arrhenius
law for T = 1, 873 K and T = 1, 273 K, we write and solve the following equation
system with respect to unknown (ED, E A, D0, k0):

D1600 = D0 exp

{

− ED

R · 1873

}

, k1600 = k0 exp

{

− E A

R · 1873

}

,

Di
1000 = Di

0 exp

{

− Ei
D

R · 1273

}

, ki
1000 = ki

0 exp

{

− Ei
A

R · 1273

}

.

We denote the corresponding solutions by (Ei
D, Ei

A, Di
0, ki

0). Substituting these values
of Ei

D, Ei
A, Di

0, ki
0 into the Arrhenius law (9) with T = 1200 ◦C = 1473 K, we get a

set of points Oi = (Di
1200, ki

1200), i = 1, . . . , m.
Now, comparing the points Oi with the graph L2, we choose the nearest one

L O . Fixing the latter, again from the Arrhenius law, the corresponding unknown
ED, E A, D0, k0 can be found uniquely.

6 Calculation results

For the three-dimensional model, we obtained the following calculation results:

1) N = (D1600, k1600) = (11e−6, 209).

2) L O = (6e−6, 170);
3) The diffusion and reaction rates as functions of synthesis temperature T :

D = 9e−5 exp(−3.3e4/(RT )), (10)

k = 450 exp(−1.2e4/(RT )). (11)

Table 1 Diffusion and reaction
rates

T 1,000 ◦C 1,200 ◦C 1,600 ◦C

One-dimensional model

D 5.0e−4 5.8e−4 7.0e−4

k 113 143 199

Two-dimensional model

D 10.5e−6 15e−6 28e−6

k 119 146 192

Three-dimensional model

D 4e−6 6e−6 11e−6

k 146 170 209
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Fig. 3 Comparison of dependence of diffusion coefficients on the temperature in one-, two-, and three-
dimensional models

The obtained Arrhenius law equations (10)–(11) give us the diffusion and reaction
rates at temperatures T = 1,000, 1,200, and 1,600 ◦C, presented in Table 1, where the
results in the one- and two- dimensional models [1] are also included for comparison.

The corresponding points (D, k) on the graphs L1–L3 and L̃3 (Fig. 2) are marked
as T1000, T1200, T1600, respectively.

In Figs. 3 and 4, we compare the graphs of the diffusion and reaction rate coefficients
as functions of temperature (the Arrhenius law) in all three models.

We see that reaction rate coefficients are rather similar in all models, although the
diffusion coefficients are not. The latter difference can be explained by noticing that,
in the one-dimensional model, the diffusion actually begins through a single point,
while in the two- and three- dimensional models, the “diffusion surface” is essentially
larger.

7 Optimization of the energy consumption

Our approach allows us to find the optimal synthesis temperature in the sense of min-
imal energy consumption. We are given the powers (Table 2, column 3) needed to
achieve various temperatures (column 2) in the YAG synthesis. The energy outly was
calculated for the high-temperature chamber furnace Nabertherm LHT. From Eqs. (10)
and (11) we can get the diffusion and reaction rates (columns 4 and 5) needed for
specific temperature and then calculate the corresponding halftimes (column 6) by
computer modeling. To calculate the total energy consumption ET (column 7) under
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Fig. 4 Comparison of dependence of reaction rate coefficients on the temperature in one-, two-, and
three-dimensional models

given synthesis temperature T , we take into account the energy consumed for pre-
heating from room temperature, for which the five times higher furnace power is used
for half an hour. For simplicity, we assume that the total synthesis time is twice the
half-time, although in real experiments, the reaction time is somewhat longer.1 To be
precise, we use the formula

ET = PT (2.5 + 2t1/2),

where PT is the power used at the synthesis temperature T . Having plotted a graph
of energy versus temperature (Fig. 5), we see that the minimal energy consumption in
the YAG synthesis is achieved at the temperature T ≈ 1, 170 ◦C.

8 Conclusions

Using a mathematical model based on second Fick’s, active mass, and Arrhenius laws,
we have analyzed a method for calculation of diffusion and reaction-rate coefficients
of heterogeneous reactions at high temperatures in the three-dimensional model. First,
we have used the half-times of two experiments by different methods at the same fixed
temperature. Second, having two additional half-times obtained by the same method
at different temperatures:

1 Theoretically, the total reaction time is infinite.
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Fig. 5 Energy consumption versus temperature

1. We obtained explicit formulas for the coefficients expressing the dependence
of diffusion coefficient and reaction rate on the temperature, provided by
Eqs. (10)–(11).

2. At the same time, we have calculated activation energies, important data that can
be used to analyze other syntheses.

3. We have compared our results with those of one- and two-dimensional models [1].
For reaction rates, we see similar results in all dimensions. However, for diffusion
rates, we the results are similar only for two- and three-dimensional models. Since
calculations in the three-dimensional case are significantly more time-consuming
than in the two-dimensional case, the two-dimensional model seems to be a good
choice for much simpler and less time-consuming calculations.

4. Using Eqs. (10)–(11), we have found the parameters D and k, and using computer
modeling, the corresponding half-times for several temperatures. Having them,
we calculated the energies consumed at these temperatures and found the optimal
temperature.

Appendix: Results of computer modeling

For completeness, we present the intermediate results of calculations obtained when
solving the problem. In Table 3, we present the parameters of activation energies of
diffusion and reaction Ei

D, Ei
A and constants Di

0 and ki
0 (i = 1, . . . , m) obtained by
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Table 2 The energy consumption in YAG synthesis

No. T (◦C) Power, PT (kW) D k t1/2 (h) Total energy, ET (MJ)

1 1,000 648 4e−6 146 5 7.8

2 1,100 667 5e−6 157 4.47 7.3

3 1,200 720 6e−6 170 4 7.2

4 1,300 975 7e−6 181 3.63 9.0

5 1,400 1,260 8e−6 191 3.37 11

6 1,500 1,512 10e−6 200 3.17 13

7 1,600 1,800 11e−6 209 3 14.4

Table 3 Results of three-dimensional modeling

i Mi Ei
D Ei

A Di
0 ki

0 Oi

D k D k

1 4e−6 146 33e3 12e3 9e−5 450 6e−6 170

2 5e−6 133 26e3 15e3 5.9e−5 544 7e−6 161

3 6e−6 126 20e3 17e3 4e−5 611 7.8e−6 156

4 7e−6 122 15e3 18e3 2.9e−5 653 8.5e−6 153

5 8e−6 119 11e3 19e3 2.2e−5 690 9.2e−6 151

our program calculations. Boldface lines show the results chosen under the condition
that the point Oi should be the nearest one to the graph L2.
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